Sunday, April 26, 2020

Notes on E&M

Notes on E&M

Definitions

E=Fq\vec E = \frac{\vec F}{q}
ϕE=EdA\phi_E = \int \vec E \cdot d\vec A
ϕB=Bdl\phi_B = \int \vec B \cdot d\vec l
ε=LFonchargeqqdl\varepsilon = \oint_{L} \frac{\vec F_{on \, charge \, q}}{q} \cdot d\vec l
ΔV=ABEdl\Delta V = -\int^B_A \vec E \cdot d\vec l    if LEdl=0\oint_L\vec E \cdot d\vec l= 0      E\vec E created by charges

Maxwell’s Equations

Gauss’s Law

EdA=qenclosedε0\oint \vec E \cdot d \vec A = \frac{q_{enclosed}}{\varepsilon_0}     → charges make E\vec E, which is path-independent
BdA=0\oint \vec B \cdot d \vec A = 0    → there is no magnetic monopole

Ampere’s Law

Bdl=μ0I+μ0ε0dϕEdt\oint \vec B \cdot d \vec l = \mu_0I + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}    → current and changing electric fulx make B\vec B

Faraday’s Law

ε=dϕBdt\varepsilon=-\frac{d\phi_B}{dt}    → changing magnetic flux makes emf

EMF

ε=LoopFonchargeqqdl\varepsilon = \oint_{Loop} \frac{\vec F_{on \, charge \, q}}{q} \cdot d\vec l
If Fonchargeq\vec F_{on \, charge \, q} comes from:

  1. B\vec B, then
    it is a motional emf

    e.g.
    A rectangular conductor with length L is moving in a uniform magnetic field, then charges on the conductor would separate by magnetic for and creates a electric field inside the conductor. The charges would keep separating until FE=FB|F_E|=|F_B|
    FE=FBF_E=F_B
    qE=qvBqE=qvB
    E=vB\therefore E=vB
    So, by ΔV=ABEdl\Delta V = -\int^B_A \vec E \cdot d\vec l,
    Get ΔV=vBL\Delta V =vBL

  2. E\vec E, then
    it is a tranformer emf
    In which LEdl0\oint_L\vec E \cdot d\vec l \neq 0, so by the Faraday’s Law,
    LEdl=ddt(BdA)\oint_L\vec E \cdot d\vec l = -\frac{d}{dt}(\int\vec B \cdot d\vec A) changing B\vec B makes E\vec E (i.e. changing B\vec B induces I).
    E\vec E here depends on path

Yet it seems that these two types of emf are different phenomena, both of them could be concluded by Faraday’s Law (i.e. changing magnetic flux)

Why E\vec E created by charges guarantees LEdl=0\oint_L\vec E \cdot d\vec l= 0

Loop ABCD as Loop L
path A to B: Edl\vec E \parallel d\vec l   so, we have ABkq/r2dl\int^B_A kq/r^2dl on path A to B
with the same logic, we have ABkq/r2(dl)\int^B_A kq/r^2(-dl) on path C to D
On path B to C and path D to A, since Edl\vec E \bot d\vec l , integrations on those two path would be zero.
So, LEdl=ABkq/r2dl+ABkq/r2(dl)=0\oint_L\vec E \cdot d\vec l= \int^B_A kq/r^2dl + \int^B_A kq/r^2(-dl) = 0

By contrast, for E\vec E created by changing B\vec B,
since Edl\vec E \parallel d\vec l,
LEdl0\oint_L\vec E \cdot d\vec l \neq 0